Digitale Zwillinge in der Luftfahrtindustrie


Implementierung nach Plan

Bei der Einführung der Anwendung wurde ein Team von Kuka Systems Aerospace hinzugezogen: Der Systemintegrator hatte zuvor vier neue Roboterzellen installiert. Die vier Anlagen sollten Bohranwendungen ausführen und die bisherigen Systeme ersetzen. “Es machte Sinn, sich zu Beginn auf diese Zellen zu konzentrieren: Damit schafften wir eine gemeinsame Softwarebasis für die Simulation der vier neuen verschiedenen Technologien”, so Arnaud Varlet. Der Arbeitsauftrag war, einen digitalen Zwilling der Anlagen zur virtuellen Validierung der Produktionsabläufe zu simulieren. Die Implementierung und Programmierung verlief nach Plan. Der Zeitkorridor war recht flexibel definiert: Eine Fertigstellung des Projekts im Laufe von 2021. “Erwähnenswert ist, dass das Projekt in die produktionsbedingt eher ruhige Zeit der Corona-Pandemie fiel. Dadurch konnten wir uns Zeit nehmen, um wesentliche Schritte und Aspekte noch besser zu durchdenken und unseren Robotik-Einsatz auch in Bezug auf Fastsuite E2 noch zukunftsfähiger und effizienter zu gestalten”, erinnert sich Jonathan Schaubroeck.

Höhere Qualität und Effizienz

Zwei Jahre nach Einführung des Systemes und der virtuellen Validierung am Standort Méaulte lässt sich ein erstes, aussagekräftiges Fazit ziehen. Eines der wichtigsten Ergebnisse: Der Gewinn an Qualität in der Produktion durch das Zusammenspiel aus Online-Programmierung und der Simulation der digitalen Anlagenzwillinge. Durch die Simulation konnte man zudem die Prozesse verbessern. Auch die Vorführzeiten im Werk sanken, also die Zeit, in der Roboter und Anlagen für die physische Demonstration der Abläufe benötigt werden. Der Prozess ist zudem von der Generierung von Programmen bis zur Ausführung an den Anlagen klar und paramterbasiert sicher.

Neuer Standard für Lastenhefte

Virtuelle Validierung ist nun Standard in Projekten: “Unsere zukünftigen Projekte zur Integration neuer Maschinen oder neuer automatisierter robotergestützter Produktionsmittel beinhalten nun ein Lastenheft für die virtuelle Kontrollvalidierung”, sagt Jonathan Schaubroeck. Integratoren, die Airbus Atlantic neue Produktionsmittel liefern, müssen fortan auch den Aspekt der virtuellen Kontrollvalidierung in die verschiedenen Milestones der Planung einbeziehen. Man erwartet dadurch effizientere Prozesse und die Optimierung der Abnahme von Produktionsanlagen vor Ort. Die positiven Ergebnisse des im Unternehmen mit viel Aufmerksamkeit verfolgten Projekts rufen bereits Nachahmer auf den Plan: In Zukunft werden weitere vier Standorte von Airbus Atlantic ebenfalls die virtuelle Validierung einsetzen. “Und wer weiß, vielleicht werden wir eines Tages die Interaktion zwischen mehreren Robotern validieren wollen. Und dann irgendwann auch die Interaktion der Anlagen der gesamten Werkstatt”, überlegt Schaubroeck.

Das könnte Sie auch interessieren

Autonomes Navigieren, Pick-and-Place-Anwendungen, Qualitätssicherung - Roboter übernehmen in der Industrie bereits viele wichtige Aufgaben und tragen zur Produktivitätssteigerung bei. Mit KI könnte Robotik künftig flexibler und resilienter werden. Wie sieht diese Kombination aus - und welche Rolle nimmt der Mensch ein?‣ weiterlesen

Trend Micro fasst im aktuellen Lagebericht die wichtigsten IT-Sicherheitstrends im ersten Halbjahr 2024 zusammen. Das Bedrohungsniveau bei Ransomware und Phishing bleibt hoch. Cyberkriminelle haben aus den jüngsten Erfolgen der Polizei gelernt und passen ihre Taktiken an, indem sie etwa KI und globale Ereignisse für ihre Zwecke nutzen. ‣ weiterlesen

Das Projekt Arctic bringt 36 internationale Partner aus Industrie und Forschung zusammen, um eine europäische Lieferkette für eine Steuerungsinfrastruktur für kryogene Quantenprozessoren aufzubauen. Die deutschen Institute Fraunhofer IPMS und Fraunhofer IAF bringen ihre Kompetenz in der Charakterisierung von elektronischen Komponenten ein. ‣ weiterlesen

Wie der VDMA vor einiger Zeit berichtet hat, trübt sich die Stimmung bei den deutschen Robotik-Herstellern zunehmend ein. Diese erwarten – vor allem aufgrund der schwachen Inlandsnachfrage – nur zwei Prozent Wachstum in 2024. Auch die chinesische Konkurrenz macht der hiesigen Branche das Leben schwer. Dass diese Krise überwiegend hausgemacht ist, meint Nikolai Ensslen, CEO und Gründer des schwäbischen Robotik-Spezialisten Synapticon. ‣ weiterlesen

Angriffe auf die IT-Infrastruktur können Datenlecks, Datenmanipulation und Produktionsausfälle verursachen. Der Schutz vor Angriffen rückt in den Vordergrund. Asset-Management ist eine Grundlage dabei, die künftig durch generative KI unterstützt werden könnte. ‣ weiterlesen

Mit der Abkündigung von Diensten und Plattformen wie Google IoT Core, IBM Watson IoT und SAP Leonardo standen im vergangenen Jahr die Zeichen im IoT-Markt auf Konsolidierung. Beobachter leiteten daraus ein Ende des Hypes ab, und Unternehmen stellten sich die Frage nach Wirtschaftlichkeit und Zukunftsfähigkeit ihrer IoT-Projekte. Zu Recht? Oder war der Abgesang verfrüht?Bei der Umsetzung einer IoT-Plattform-Migration unterstützt Device Insight die Unternehmen mit einem 5-Schitte-Verfahren. Darin enthalten ist ein Anforderungs-Check für die strukturierte Konzept-Entwicklung. (Bild: Device Insight GmbH)Das Internet of Things ist ein Werkzeug, das Unternehmen dabei unterstützt, Probleme zu lösen. Doch in der Frühphase des IoT wurde – oft ohne konkreten Anwendungsfall – viel experimentiert. Unternehmen wollten innovativ sein, den Trend nicht verpassen, und gingen davon aus, dass das Sammeln von Daten sich irgendwann als wertvoll erweisen würde. Mit dem heute erreichten Reifegrad des Marktes konzentrieren sich IoT-Investitionen jedoch stärker auf erzielbare Geschäftsergebnisse. Im industriellen Kontext bilden etwa gepflegte IoT-Daten eine wichtige Grundlage von Prozessoptimierung und für KI-Anwendungen. Gleichzeitig kämpfen viele Unternehmen mit ineffizienten IoT-Architekturen. Darauf müssen sie ebenso reagieren wie auf das Veralten oder Verschwinden von Plattformen.Nicht alles, was technisch machbar ist, ist wirtschaftlich sinnvoll. In der Anfangszeit experimentierten viele Unternehmen mit Hilfe von externen Dienstleistern und bauten IoT-Anwendungen auf. Doch der kommerzielle Erfolg blieb oft aus. In den letzten Jahren scheinen Unternehmen jedoch zunehmend zu verstehen, wie das IoT Mehrwerte für ihre Produktion, Produkte und Dienstleistungen bringen kann. Vielfach stellen vernetzte Software-Komponenten bereits integrale Bestandteile von Produkten und Geschäftsprozessen dar. Zunehmend bauen Unternehmen daher interne Kompetenz auf, wo sie sie vorher noch extern eingekauft haben. Dazu gehört auch die eigene Softwareentwicklung. Hier stehen sie jedoch vor der Herausforderung, gute Entwickler zu finden und zu halten. Das gilt besonders für Mittelständler, die häufig im ländlichen Raum ansässig sind.Ein weiteres Problem ist die Verwendung von IoT-Plattformen, die während der Hype-Phase eingeführt wurden und die sich später als ineffizient, instabil oder nicht skalierbar genug erwiesen. Die Folgen sind hohe operative Kosten, unzuverlässige Systeme und hohe Wartungsaufwände, die die Ressourcen von Entwicklern binden. Besonders problematisch ist das, wenn der Betrieb von Infrastruktur und Anwendungen zeitintensiv ist, weil auf Infrastructure as a Service (IaaS) gesetzt wurde.IoT ist inzwischen Bestandteil vieler Produkte. Eine instabile IoT-Architektur oder ein instabiler digitaler Teil eines größeren Produkts verringern den Wert der gesamten Lösung. Im schlimmsten Fall kann es zu Kundenunzufriedenheit und Rufschäden kommen. Hohe Betriebs-, Entwicklungs- und Sicherheitskosten binden Ressourcen, die in der Entwicklung und Verbesserung von Produkten besser investiert wären.Oft weisen IoT-Plattformen der ‘ersten Generation’ Leistungsdefizite auf, da sie nicht ausreichend auf Skalierbarkeit ausgelegt sind. Zudem sind viele ältere Plattformen häufig nicht modular aufgebaut und somit weniger flexibel. Auch hohe Betriebskosten sind bei älteren IaaS-basierten Lösungen häufig ein Problem. Ein möglicher Ausweg besteht im Umstieg auf Public Clouds wie Azure oder AWS. Vor einer solchen Migration sollte jedoch die bestehende Lösung und die Architektur evaluiert werden, um Fehler nicht zu wiederholen.

Mit der Digitalisierung ihrer Produktion erlangen Unternehmen mehr Produktivität, Flexibilität und Datendurchgängigkeit. Allerdings blockieren heterogene IT- und OT-Landschaften vielerorts die notwendige Modernisierung. Außerdem fehlen Fachleute für aufwendige Innovationsprojekte. In diesem Szenario bietet sich eine modulare Software-Plattform an, die vorhandene IT- und OT-Strukturen vernetzt sowie die Schwächen bisheriger Ansätze aus starr verketteten SPS-basierten Lösungen vermeidet.Digitalisierung und Einbindung funktionieren im eigenen Haushalt einfach und kostengünstig: Fernseher, Laptops und Türklingeln lassen sich ohne besonderes Fachwissen innerhalb von Minuten in das Heimnetz integrieren. Selbst eine Hausautomation können Heimwerker heute umsetzen und komplette Abläufe ohne Programmierkenntnisse definieren. In der Industrie ist es dagegen bislang unmöglich, Werkzeugmaschinen, Laser, Roboter oder Prüfzellen schnell in Fertigungsprozesse einzubeziehen und Produktionsanlagen simpel und flexibel umzustellen.Das liegt vor allem an den fragmentierten Digitalisierungsansätzen, die aus den gewachsenen komplexen IT- und OT-Landschaften resultieren: Die Automatisierungstechniken und Software-Anwendungen stammen oftmals aus den 1990er-Jahren. Häufig laufen Architekturen aus logisch starr miteinander verketteten individuellen SPS-basierten Lösungen. Applikationen lassen sich nur funktional erweitern, indem Experten unterschiedliche Programme und SPS-Systeme anpassen. Das alles erschwert eine Modernisierung und Standardisierung der Fertigungsprozesse. Zahlreiche Digitalisierungslösungen adressieren diese Herausforderungen zwar und versprechen mehr Effizienz und Flexibilität. Sie haben jedoch meistens zwei wesentliche Schwächen:1. schaffen langwierige Adaptionen in der laufenden Produktion Risiken für einen Stillstand und lange Rüstzeiten. Selbst wenn Optimierungen bekannt und theoretisch realisierbar sind, implementieren viele Unternehmen diese letztlich nicht – aus Sorge vor einem zu langen Fertigungsausfall. Im Ergebnis schöpfen sie ihre Produktionspotenziale nicht aus.2. haben etablierte digitale Lösungen – zum Beispiel MES-, SPS- und Industrie 4.0-Ansätze – wohl ihre Vorteile für verschiedene Fabrik-Settings. Sie stellen allerdings keine durchgängigen Kontroll- und Datenflüsse sicher.Das Ergebnis solcher IT/OT-Projekte bleibt dann oft eine fragmentierte Digitalisierung: Die Durchgängigkeit vom Auftrag zum Artikel fehlt weiterhin, Prozessdaten werden ohne Korrelation erfasst, für mehr Flexibilität und kleine Losgrößen entstehen noch immer hohe Kosten, Anpassungen bedeuten einen großen Programmieraufwand an den SPSen. Solche Insellösungen und Datensilos werden den hohen Anforderungen einer modernen Fabrik nicht gerecht.Diese Schwächen umgehen Lösungen aus dem Manufacturing Operations Management (MOM). Das verspricht eine lückenlose Kommunikation von der Fertigungs- bis zur Unternehmensleitebene. Das MOM verwaltet und optimiert Produktionsprozesse und modelliert diese durchgängig digital – von der Planung und Steuerung sowie Organisation und Durchführung über die Überwachung und Verbesserung der Prozesse bis zur Datenanalyse. Dafür braucht es ein systemübergreifendes Zusammenspiel von MES, ERP, Produktionsplanung und mehr. Die Vernetzung gelingt mit einer Vielzahl offener technischer Schnittstellen.

Zwar erhöhen Firmen mittels Wartung die Verfügbarkeit ihrer Anlagen. Laut einer Studie von ABB kommt es bei der Mehrheit der Befragten monatlich jedoch zu mindestens einem ungeplanten Stillstand. ‣ weiterlesen

Die Kombination von Robotik und künstlicher Intelligenz (KI) verspricht großes Potenzial für die Produktion. Werden Bewegungsanweisungen etwa von einem KI-Algorithmus berechnet, muss nicht für jede neue Fertigungsaufgabe eine Fachperson hinzugezogen werden. Nach diesem Prinzip haben Forschende am IHP-Institut für Integrierte Produktion Hannover einem Cobot das Zeichnen beigebracht. Dieses , das ausschließlich relevante Kanten enthält, kann von einem Cobot nachgezeichnet werden. (Bild: Susann Reichert / IPH gGmbh)Kollaborierende Roboter, auch Cobots genannt, übernehmen in der Produktion Aufgaben, die üblicherweise von menschlichen Händen ausgeführt werden. Im Vergleich zu klassischen Industrierobotern sind sie kleiner und flexibler. Sie sind dafür gebaut, Seite an Seite mit Menschen zusammenzuarbeiten. Zudem zeichnen sich Cobots durch eine intuitivere Handhabung und geringeren – allerdings manuellen – Programmieraufwand aus. Der Einsatz lohnt sich daher nur für repetitive Bewegungsabläufe. Aufgaben, bei denen Flexibilität gefordert ist – etwa bei der Fertigung von Einzelstücken nach individuellen Kundenwünschen – können Cobots noch nicht sinnvoll übernehmen. Mit Hilfe von künstlicher Intelligenz (KI) könnte sich dies jedoch ändern. KI-Algorithmen übernehmen dabei die Aufgabe, Bewegungsanweisungen für den Cobot zu erstellen. In Zukunft könnten Cobots somit auch von Personen ohne Programmierkenntnisse bedient werden.Ein Beispiel für die Verbindung von Cobot und KI haben Forschende am IPH – Institut für Integrierte Produktion Hannover entwickelt. Sie haben einem Cobot beigebracht, Bilder detailliert nachzuzeichnen. Dabei wird ein zuvor unbekanntes Bild mittels KI analysiert und in eine Bewegungsanweisung für den Roboter umgewandelt.Mit mehreren verarbeitungs-Algorithmen wird ein in ein Schwarz-Weiß-umgewandelt, das ausschließlich relevante Kanten enthält. (Bild: Leonard Engelke / IPH gGmbh)Damit das Bild vom Cobot gezeichnet werden kann, sind zunächst mehrere Bildverarbeitungs-Schritte notwendig. Ziel ist es, das Bild so umzuwandeln, dass nur die wichtigen Kanten übrig bleiben. Für die Bildverarbeitung greifen mehrere Algorithmen ineinander. Zunächst wird das Bild in ein Schwarz-Weiß-Bild umgewandelt. Anschließend wird der Weichzeichner Gaussian Blur angewandt, um Bilderrauschen, Artefakte und kleinere Details zu entfernen. Danach kommt der Canny-Algorithmus (Canny Edge Detector) zum Einsatz: Dieser prüft jeden einzelnen Pixel darauf, wie stark sich dieser von seiner Umgebung abhebt. Pixel, die sich stark abheben, werden als Kante erkannt, alle anderen Pixel werden entfernt. So entsteht ein Schwarz-Weiß-Bild, das ausschließlich relevante Kanten enthält (siehe Zeichnung).Anschließend erstellt die KI den Programmiercode für den Cobot, der damit das Bild möglichst effizient zeichnen kann. Das Ziel ist es, nicht für jeden Pixel eine eigene Bewegungsanweisung zu erstellen, sondern so viele Pixel wie möglich in einer einzelnen Bewegung zu zeichnen. Die Zeichnung erfolgt also nicht Punkt für Punkt, sondern in langen, verbundenen Linien – überflüssige Bildfragmente werden weggelassen. Die KI trifft dabei die Entscheidungen, welche Bildpunkte tatsächlich relevant sind und welche entfallen werden können.Die Kombination aus Robotik und KI-Bilderkennung bietet perspektivisch Möglichkeiten für verschiedene Fertigungsbereiche. So könnten Cobots künftig individuelle Gravuren auf unterschiedliche Produkte aufbringen. Die KI-Bilderkennung erkennt die Größe und Form des Produkts, die Oberflächenbeschaffenheit und das Material und errechnet die richtigen Parameter für den Cobot, der die Gravur aufbringt.In der Werkstattfertigung könnte ein solcher Roboter ein individuelles Bauteil verschweißen. Benötigt würde dafür die CAD-Datei der Bauteilgeometrie sowie die Schweißnahtposition – die Bewegungsanweisungen für den Roboter errechnet dann ein KI-Algorithmus.Potenzial verspricht das Zusammenspiel von KI und Cobot auch bei der Qualitätssicherung: Die KI erkennt fehlerhafte Werkstücke, der Cobot sortiert sie aus. Wird die Qualität bereits während des Fertigungsprozesses erfasst, kann die KI bei Abweichungen eigenständig die Parameter anpassen und dadurch Ausschuss vermeiden. Die KI-basierte Qualitätssicherung beim 3D-Druck von individuellen Medizinprodukten hat das IPH bereits im Forschungsprojekt ‘Saviour’ erforscht.

Bei der Planung von Maschinen und Anlagen arbeiten viele Domänen einander zu. Das erschwert den Datenaustausch. Zwar unterstützen Product-Lifecycle-Management-Systeme (PLM), diese sind aber oft aufwendig in ihrer Integration. Mit einer selbst entwickelten Software will das Fraunhofer IFF nun eine Alternative bieten.Im Planungsprozess von Maschinen und Anlagen sind viele Akteure, wie Statiker, Elektriker, Layoutplaner, Logistiker und Ingenieure zu verschiedenen Zeitpunkten involviert. Sie nutzen unterschiedliche Software, was effizienten Datenaustausch erschwert. Im Rahmen eines Forschungsprojektes hat das Fraunhofer IFF eine Anwendung entwickelt, die alle genutzten Systeme innerhalb eines Produktlebenszyklus miteinander vernetzt. Damit wollen die Forschenden den Datenaustausch von der Planung über die Produktion bis hin zum End-of-Life ermöglichen. Die Software des Fraunhofer IFF setzt auf die Verwaltungsschale (englisch: Asset Administration Shell oder AAS), um Daten über standardisierte Schnittstellen bereitzustellen und zusammenzuführen. Über den AAS-Thread werden diese Daten zwischen den einzelnen AAS ausgetauscht. Akteure können über einen Browser auf Daten zugreifen, diese in eigenen Client-AAS zusammenstellen und nutzen.Mit Blick auf die unterschiedlichen Planungsprozesse und die eingesetzte Software fallen große und oft nicht kompatible Datenmengen an. Um diese sinnvoll zur Verfügung zu stellen, mussten die Forschenden zunächst Grundsatzfragen klären, etwa welche Datenquellen es überhaupt gibt. Ebenso musste Klarheit darüber bestehen, wo die Datenquellen verortet sind, in welchen Strukturen und wie diese auffindbar sind. Letztlich musste auch die Art der Datennutzung geklärt werden: Wer braucht beispielsweise welche Daten und wie gelangen diese zum Nutzer?Product-Lifecycle-Management-Systeme (PLM) bieten eine solche digitale Vernetzung über zahlreiche Kommunikationsprotokolle und Datenbanken an. Diese haben allerdings auch oft unerwünschte Effekte wie etwa die Verwechslung oder falsche Interpretation von Daten, die zentrale Sammlung aller Daten in einer Cloud, die mehrfache Existenz gleicher Daten und das Einzelmapping aller Datenpunkte von den Quellen ins PLM-System. Auch müssen neue Datenquellen aufwendig integriert werden, weil es oft keine flexible, modulare Architektur gibt.Hier verspricht die Verwaltungsschale Abhilfe. Als standardisierter digitaler Zwilling macht die AAS Produktionsdaten von Ressourcen wie Maschinen, Anlagen und Sensoren in einer standardisierten und semantisch beschriebenen Struktur abrufbar oder diese auch steuerbar. Sie wirkt als Software-Layer zur Integration von Datenquellen und Systemen. Weiterhin wird die AAS von der Industrial Digital Twin Association (IDTA) in sogenannten Teilmodellen standardisiert. Die IDTA beschreibt zu jedem Datenpunkt einer AAS eine eigene Schnittstelle (API) um den Wert abzurufen oder zu verändern. Ziel ist, die Erstellung und Nutzung von Verwaltungsschalen anwendungsfallbezogen zu standardisieren und somit zu vereinfachen.Die Forschenden am Fraunhofer IFF nutzen die AAS, um einen Digital Thread am Beispiel eines Produkts in der Luftfahrtindustrie umzusetzen. Im Herzen des Digital Thread steht der AAS-Thread. Dieser kann als eine leistungsfähige Datenautobahn zwischen den einzelnen AAS beschrieben werden. Die in der jeweiligen Lebenszyklusphase genutzten Systeme stellen ihre Datenquellen dabei mittels AAS zur Verfügung. Somit befinden sich alle Daten in standardisierten Umgebungen. Die Funktionalitäten der einzelnen AAS werden durch Teilmodelle beschrieben. Nutzer können mittels eines Browsers alle vorhandenen AAS nach dem Inhalt aller Datenquellen durchsuchen. Mit einem Konfigurator können sie auch eigene Client-AAS mit Werten aus verschiedenen Datenquellen bzw. der Quell-AAS zusammenstellen.Weiterhin kann bei der AAS jeder Wert mit einer SemanticID versehen werden. In öffentlichen Katalogen befindet sich hinter jeder SemanticID eine eindeutige Beschreibung, was mit diesem Wert gemeint ist. Kataloge wie Eclass enthalten bis zu 50.000 Einträge, die genutzt werden können. Diese Kataloge tragen den Gedanken der durchgängigen Standardisierung weiter bis in die Metaebene der Daten. Diese Werte der Datenquellen können nun genutzt werden, um damit zu arbeiten. Die daraus entstehenden Output-Daten werden wiederum durch AAS für weitere Nutzung zur Verfügung gestellt. Auch können weitere zugriffsberechtigte Akteure diese Daten nutzen.

Das Fraunhofer-Institut für Photonische Mikrosysteme IPMS präsentiert einen Demonstrator für die vorausschauende Wartung von Industrieanlagen. Dieser nutzt Sensorik, kombiniert mit einer auf künstlicher Intelligenz (KI) basierenden Datenverarbeitung, um potenzielle Maschinenschäden frühzeitig zu erkennen und kostspielige Ausfallzeiten zu vermeiden. ‣ weiterlesen